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Study of MV-algebras via derivations

Jun Tao Wang, Yan Hong She and Ting Qian

Abstract

The main goal of this paper is to give some representations of MV-
algebras in terms of derivations. In this paper, we investigate some
properties of implicative and difference derivations and give their char-
acterizations in MV-algebras. Then, we show that every Boolean al-
gebra (idempotent MV-algebra) is isomorphic to the algebra of all im-
plicative derivations and obtain that a direct product representation of
MV-algebra by implicative derivations. Moreover, we prove that regu-
lar implicative and difference derivations on MV-algebras are in one to
one correspondence and show that the relationship between the regular
derivation pair (d, g) and the Galois connection, where d and g are reg-
ular difference and implicative derivation on L, respectively. Finally, we
obtain that regular difference derivations coincide with direct product
decompositions of MV-algebras.

1 Introduction

Fuzzy logic takes the advantage of the classical logic to handle uncertain
information and fuzzy information. In recent decades, various logical algebras
have been proposed as the semantical systems of fuzzy logic systems, for ex-
ample, MV-algebras [3], BL-algebras [10] and MTL-algebras [7]. Among these
logical algebras, MV-algebras are very important algebraic structures. MV-
algebras were introduced in [3] as an algebraic counterpart of the  Lukasiewicz
infinite valued propositional logic, but their theories were also developed from
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an algebraic point of view [3, 4, 5, 6, 17]. It is generally known that MV-
algebras can also be studied within the context of abelian lattice-ordered
groups with strong units (`-groups), this viewpoint was made possible by the
fundamental results of Mundici [5, 15] that the category of MV-algebras is
equivalent to the category of `-groups.

The notion of derivations, introduced from the analytic theory, is helpful
for studying algebraic structures and properties in algebraic systems. In 1957,
Posner [16] introduced the notion of derivations in a prime ring (R,+, ·), which
is a mapping d : R −→ R satisfying the following conditions:

(i) d(x+ y) = d(x) + d(y), (ii) d(x · y) = (d(x) · y) + (x · d(y)),

for any x, y ∈ R, and gave some characterizations of commutative prime ring
in terms of derivations. Subsequently, Jun [12] applied the notion of deriva-
tions to BCI-algebras and gave characterizations of p-semisimple BCI-algebra
by regular derivations. Inspired by this, several authors have studied gener-
alized derivations in BCI-algebras [2, 23]. In the past few years, Xin [19, 20]
introduced the concept of derivations in a lattice, where operations + and ·
are interpreted as lattice operations ∨ and ∧, respectively, and characterized
modular lattices and distributive lattices by isotone derivations; Alshehri [1]
introduced the notion of (additive) derivations for an MV-algebra, where oper-
ations + and · are interpreted as ⊕ and �, and discussed some related proper-
ties; Sang and Yong [13, 21] investigate derivation and generalized derivation
in lattice implication algebra and characterized the fixed set by these deriva-
tions; He [11] investigated derivations in residuated lattices and characterize
Heyting algebras in terms of derivations; Zhu [22] introduced some deriva-
tions in linguistic truth-valued lattice implication algebras and discussed the
relationship between them; Wang [18] investigated derivations in commutative
multiplicative semilattices and characterize quantales in terms of derivations;
Liang [14] introduced the notion of derivations of EQ-algebra and gave some
characterizations of them.

In this paper, we will further study derivations of MV-algebras. One of our
aims is to obtain some representations of MV-algebras by means of derivations.
In particular, we will obtain the following main results: (1) every Boolean al-
gebra is isomorphic to the algebra of all implicative derivations, which shows
that the structure of a Boolean algebra is completely determined by its set of
all implicative derivations. Indeed, this results essentially go a step further of
the following important results in [19]: every distributive lattice is isomorphic
to the algebra of all principal lattice derivations; (2) there exists a one to one
correspondence between regular difference derivations and direct product de-
compositions on MV-algebras, which shows that regular difference derivations
coincide with direct product decompositions of MV-algebras. It’s always been
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known that Galois connections play a central role in studying MV-algebras,
and so the relationship among implicative, difference derivations and Galois
connections is the other aim of us to study. Indeed, we will get the following
main results: (3) there exists an antitone Galois connection between the set
of implicative and difference derivations; (4) regular implicative and difference
derivations on MV-algebras are in one to one correspondence; (5) every regular
derivation pair (d, g) is a Galois connection on L if and only if g(L) = d(L).

The paper is organized as follows: In Section 2, we review some basic
definitions and results about MV-algebras. In Section 3, we give some repre-
sentations of MV-algebra in terms of implicative derivations. In Section 4, we
discuss the relationship between derivations and Galois connections.

2 Preliminaries

In this section, we summarize some results about MV-algebras, which will
be used in the following sections.

An MV-algebra is an algebraic structure L = (L,⊕, ∗, 0) satisifying the
following axioms: for any x, y ∈ L,

(MV1) (L,⊕, 0) is a commutative monoid,
(MV2) (x∗)∗ = x,
(MV3) 0∗ ⊕ x = 0∗,
(MV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
We shall adopt the usual conventions for MV-terms:∗ operation is more

binding than⊕. On MV-algebra L, we define the constant 1 and the operations
�, 	, → are as follows: 1 = 0∗, x � y = (x∗ ⊕ y∗)∗, x 	 y = x � y∗ and
x → y = x∗ ⊕ y for any x, y ∈ L. We shall define x ≤ y if and only if
x∗ ⊕ y = 1, and check that ≤ is a partial order, called the natural order of L.
The natural order determines a lattices structure, in which x∨y = (x�y∗)⊕y,
x∧y = x� (x∗⊕y) for any x, y ∈ L. The structure (L,∧,∨, 0, 1) is a bounded
distributive lattice. We say that the MV-algebra L is linearly ordered if the
lattice (L,∧,∨, 0, 1) is linearly ordered. An MV-algebra is a Boolean algebra
if it satisfies the additional equation x⊕ x = x (or x� x = x) for any x ∈ L,
and denote by B(L) = {x ∈ L|x ⊕ x = x} be the set of all idempotent
elements of L. As MV -algebras form an equational class, the notions of MV-
homorphism, ideal, quotient, subalgebra, product, are just the particular cases
of the corresponding universal algebraic notions [3, 5, 6].

Let (G,+,≤) be an abelian `-group, i.e., an abelian group equipped with
a compatible lattice ordered. For any 0 ≤ u ∈ G, the algebra Γ(G, u) =
([0, u],⊕u,¬, 0), where x ⊕u y = (x + y) ∧ u and ¬x = u − x, is an MV-
algebra. Up to isomorphism, all MV-algebras are of the form Γ(G, u), where
u is a strong unit for G, i.e., the convex `-group of G generated by u is G.
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Even strongly, Γ as a functor is an equivalence between the category of unital
abelian `-groups and the category of MV-algebras [5].

Proposition 2.1 ([3, 4]). In an MV-algebra, the following properties hold:
for any x, y ∈ L,

(1) x⊕ x∗ = 1,
(2) x	 0 = x, 0	 x = 0, x	 x = 0, 1	 x = x∗, x	 1 = 0,
(3) x ≤ y if and only if x→ y = 1 if and only if x	 y = 0,
(4) x� y ≤ x ∧ y,
(5) x→ (y ∧ z) = (x→ y) ∧ (x→ z),
(6) x→ (y ∨ z) = (x→ y) ∨ (x→ z),
(7) if x ≤ y, then x � z ≤ y � z, z → x ≤ z → y, y → z ≤ x → z,

x	 z ≤ y 	 z, z 	 y ≤ z 	 x,
(8) x ∨ y = (x→ y)→ y = (y → x)→ x,
(9) x ∧ y = y 	 (y 	 x),
(10) x� (y ∨ z) = (x� y) ∨ (x� z),
(11) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z),
(12) x→ (y → z) = y → (x→ z).

Proposition 2.2 ([3]). Let L be an MV-algebra. Then the following state-
ments are equivalent: for any x, y ∈ L,

(1) x ∈ B(L),
(2) x⊕ y = x ∨ y,
(3) x� y = x ∧ y.

Proposition 2.3 ([6]). Let L be an MV-algebra and e ∈ B(L). Then the
following properties hold: for any x, y ∈ L,

(1) e ∧ (x� y) = (e ∧ x)� (e ∧ y),
(2) e ∨ (x� y) = (e ∨ x)� (e ∨ y),
(3) e ∧ (x⊕ y) = (e ∧ x)⊕ (e ∧ y),
(4) e ∨ (x⊕ y) = (e ∨ x)⊕ (e ∨ y),
(5) e� (x→ y) = e� [(e� x)→ (e� y)],
(6) e→ (x→ y) = (e→ x)→ (e→ y).

Theorem 2.4 ([3]). (Chang’s representation theorem) Every nontrivial
MV-algebra is a subdirect product of linearly ordered MV-algebras.

Galois connections play a central role in fuzzy logic systems and their
algebraic semantics, hence we recall some well-known properties of order-
preserving Galois connections used here. Let µ : P → Q and ν : Q → P
be two mappings between ordered sets P and Q. The pair (µ, ν) is a mono-
tone Galois connection between P and Q, if for all p ∈ P and q ∈ Q, µ(p) ≤ q
if and only if p ≤ ν(q). An equivalent characterization states a pair (µ, ν)
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forms a Galois connection between P and Q if and only if it satisfying: (1)
p ≤ ν(µ(q)) for all p ∈ P and µ(ν(p)) ≤ q for all q ∈ Q, (2) the mappings µ
and ν are order-preserving. Likewise by duality we can define the notion of
antitone Galois connection [9].

3 Implicative derivations on MV-algebras

In this section, we investigate some basic properties of implicative deriva-
tions and give their characterizations in MV-algebras. Then, we show that
every Boolean algebra is isomorphic to the algebra of all implicative deriva-
tions. Finally, we obtain that a direct product of MV-algebras by regular
implicative derivations.

Implicative derivations were first introduced by He in residtaed lattices
[11], we applied the notion of that to MV-algebras as follows.

Definition 3.1. Let L be an MV-algebra. A mapping g : L −→ L is called
an implicative derivation on L if it satisfies the following condition: for any
x, y ∈ L,

g(x→ y) = (g(x)→ y) ∨ (x→ g(y)).

We will denote the set of all implicative derivations of an MV-algebra by
I(L).

Example 3.2. Let L be an MV-algebra. Define a mapping 1g : L −→ L by
1g(x) = 1 for all x ∈ L, then 1g is an implicative derivation on L. Moreover,
we define a mapping g1 : L −→ L by g1(x) = x for all x ∈ L. Then g1 is an
implicative derivation on L, which is called an identity implicative derivation.

Example 3.3. Let L be an MV-algebra and a ∈ L. Define a mapping ga :
L −→ L by ga(x) = a → x for all x ∈ L, then ga is an implicative derivation
on L, which is called a simple implicative derivation.

Example 3.4. Let L = [0, 1] be the real unit interval. If we define x ⊕ y =
min{1, x+y} and x∗ = 1−x for any x, y ∈ L, then (L,⊕, ∗, 0) is an MV-algebra,
which is called a standard  Lukasiewicz structure. Also, for each number n ≥ 2,
the n-element set Sn = {0, 1

n−1 ,
2

n−1 , · · · ,
n−1
n−1 , 1} is a subalgebra of L. Now,

we define a mapping g : Sn → Sn as follows: for all x ∈ Sn,

g(x) =

{
1

n−1 , x = 0
1

n−1 ⊕ x, x 6= 0

It is verified that g is an implicative derivation on Sn.
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Proposition 3.5. Let g be an implicative derivation on L. Then the following
properties hold: for any x, y ∈ L,

(1) g(1) = 1,
(2) x ≤ g(x),
(3) g(x)→ y ≤ x→ g(y),
(4) if x ≤ y, then g(x) ≤ g(y),
(5) g(x) = x⊕ g(0),
(6) g(x ∧ y) = g(x) ∧ g(y),
(7) g(x⊕ y) ≤ g(x)⊕ g(y).

Proof. For (1)-(3) see ([11], Proposition 4.8), we only to prove (4)-(7).
(4) If x ≤ y, then follows from Proposition 2.1(8) that

g(y) = g(x ∨ y) = g((y → x)→ x)

= (g(y → x)→ x) ∨ ((y → x)→ g(x))

≥ (y → x)→ g(x)

≥ g(x).

Thus, g(x) ≤ g(y).
(5) For any x ∈ L, by Definition 3.1, we have

g(x) = g(x∗∗) = g(x∗ → 0)

= (g(x∗)→ 0) ∨ (x∗ → g(0))

= (g(x∗))∗ ∨ (x⊕ g(0)).

Also, by (2), we have (g(x∗))∗ ≤ x∗∗ = x, and so g(x) = x ⊕ g(0) for any
x ∈ L.

(6) For any x, y ∈ L, by (5) and Proposition 2.1(11), we have

g(x ∧ y) = g(0)⊕ (x ∧ y)

= (g(0)⊕ x) ∧ (g(0)⊕ y)

= g(x) ∧ g(y).

Thus, g(x ∧ y) = g(x) ∧ g(y) for any x, y ∈ L.
(7) For any x, y ∈ L, from (5), we have

g(x⊕ y) = g(0)⊕ (x⊕ y)

≤ g(0)⊕ g(0)⊕ (x⊕ y)

= (g(0)⊕ x)⊕ (g(0)⊕ y)

= g(x)⊕ g(y).

Thus, g(x⊕ y) ≤ g(x)⊕ g(y) for any x, y ∈ L.
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Remark 3.6. (1) Proposition 3.5(3) gives us an ideal of introducing an im-
plicative derivation on an MV-algebra in a different way. Namely, we can
consider a mapping g : L→ L satisfying

g(x→ y) = x→ g(y)

for any x, y ∈ L. As an application of the above statement, we can obtain
that ga in Example 3.2 is an implicative derivation, since

ga(x→ y) = a→ (x→ y) = x→ (a→ y) = x→ ga(y)

for any x, y ∈ L.
(2) Proposition 3.5(5) shows that every implicative derivation g is com-

pletely determined by the element g(0), however, it does not hold in residuated
lattices in general (see [11], Example 4.3). Also, we can prove that a residuated
lattice is regular, which is a residuated lattice satisfies x∗∗ = x, if and only
if it satisfies Proposition 3.5(5). As a corollary of the above statement, every
BL-algebra is an MV-algebra if and only if it satisfies Proposition 3.5(5), since
BL-algebra is a subclass of residuated lattice based on continuous t-norm and
its residua. In this case, x∗∗ = x is equivalent to (x→ y)→ y = (y → x)→ x
for any x, y ∈ L.

By means of implicative derivation, we give some characterizations for an
MV-algebra to be a Boolean algebra.

Theorem 3.7. Let L be an MV-algebra. Then the following statements are
equivalent: for any x, y ∈ L,

(1) L is a Boolean algebra,
(2) every implicative derivation g on L satisfies g(x ∧ y) = g(x)� g(y),
(3) every implicative derivation g on L satisfies g(x ∨ y) = g(x)⊕ g(y).

Proof. (1) ⇒ (2) If L is a Boolean algebra, then L satisfies x � y = x ∧ y for
any x, y ∈ L. For any x, y ∈ L, by Proposition 3.5(6), we have

g(x ∧ y) = g(x) ∧ g(y) = g(x)� g(y).

Thus, g(x ∧ y) = g(x)� g(y) for any x, y ∈ L.
(2)⇒ (1) From Example 3.2, we know that g1 is an implicative derivation

on L. Taking g = g1, we have x � y = x ∧ y for all x, y ∈ L, which implies
that L is a Boolean algebra.

(1)⇒ (3) If L is a Boolean algebra, then L satisfies x⊕ y = x ∨ y for any
x, y ∈ L. For any x, y ∈ L, from Proposition 3.5(7), we have

g(x) ∨ g(y) ≤ g(x ∨ y) = g(x⊕ y) ≤ g(x)⊕ g(y) = g(x) ∨ g(y).

Thus, g(x ∨ y) = g(x)⊕ g(y) for any x, y ∈ L.
(3)⇒ (1) The proof is similar to that of (2)⇒ (1).
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Also, we give some characterizations of implicative derivations on MV-
algebras.

Theorem 3.8. Let g be a self mapping on L. Then the following statements
are equivalent: for any x, y ∈ L,

(1) g is an implicative derivation on L,
(2) g(x) = x⊕ g(0),
(3) g(x⊕ y) = x⊕ g(y),
(4) g(x→ y) = x→ g(y).

Proof. (1)⇒ (2) It follows from Proposition 3.5(5).
(2)⇒ (3) For any x, y ∈ L, by (2), we have

g(x⊕ y) = (x⊕ y)⊕ g(0) = x⊕ (y ⊕ g(0)) = x⊕ g(y).

Thus, g(x⊕ y) = x⊕ g(y) for any x, y ∈ L.
(3)⇒ (4) For any x, y ∈ L, by (3), we have

g(x→ y) = g(x∗ ⊕ y) = x∗ ⊕ g(y) = x→ g(y).

Thus, g(x→ y) = x→ g(y) for any x, y ∈ L.
(4)⇒ (1) It follows from Remark 3.6(1).

The following theorems give a representation of Boolean algebras in terms
of implicative derivations. Namely, every Boolean algebra is isomorphic to the
algebra of all implicative derivations.

Theorem 3.9. Let L be an MV-algebra. Then (I(L),∩,∪, g1, 1g) is a bounded
distributive lattice, where (gi ∩ gj)(x) = gi(x) ∧ gj(x), (gi ∪ gj)(x) = gi(x) ∨
gj(x), g1(x) = x, 1g(x) = 1, for any gi, gj ∈ I(L), x ∈ L.

Proof. For any gi, gj ∈ I(L) and x ∈ L, by Propositions 2.1(5) and Theorem
3.8(4), we have

(gi ∩ gj)(x→ y) = (gi(x→ y)) ∧ (gj(x→ y))

= (x→ gi(y)) ∧ (x→ gj(y))

= x→ (gi(y) ∧ gj(y))

= x→ (gi ∩ gj)(y),

which implies gi ∩ gj ∈ I(L).
Also, it follows from Proposition 2.1(6) and Theorem 3.8(4) that

(gi ∪ gj)(x→ y) = (gi(x→ y)) ∨ (gj(x→ y))

= (x→ gi(y)) ∨ (x→ gj(y))

= x→ (gi(y) ∨ gj(y))

= x→ (gi ∪ gj)(y),
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which implies gi ∪ gj ∈ I(L).
Moreover, for any gi ∈ I(L), x ∈ L, we have

(gi ∩ g1)(x) = gi(x) ∧ g1(x) = gi(x) ∧ x = x = g1(x)

and
(gi ∪ 1g)(x) = g1(x) ∨ 1g(x) = gi(x) ∨ 1 = 1 = 1g(x),

which implies that g1 is the smallest element and 1g is the greatest element of
I(L).

Thus, (I(L),∩,∪, g1, 1g) is a bounded lattice. Since (L,∧,∨, 0, 1) is a
bounded distributive lattice, (I(L),∩,∪, g1, 1g) is also a bounded distributive
lattice.

Theorem 3.10. Let (L,∧,∨, ∗, 0, 1) be a Boolean algebra. Then (I(L),∩,∪,¬, g1, 1g)
is a Boolean algebra, where (gi ∩ gj)(x) = (gi(x)) ∧ (gj(x)), (gi ∪ gj)(x) =
(gi(x)) ∨ (gj(x)), (gi ⇒ gj)(x) = gi(x)→ gj(x), ¬(gi)(x) = (gi(x))→ (g1(x)),
g1(x) = x, 1g(x) = 1, for any gi, gj ∈ I(L), x ∈ L.

Proof. Theorem 3.9 shows that (I(L),∩,∪, g1, 1g) is a bounded distributive
lattice. Now, we prove that (I(L),∩,∪,¬, g1, 1g) is a Boolean algebra if L is
a Boolean algebra. Indeed, for any gi, gj ∈ I(L) and x ∈ L, by Proposition
2.3(6) and Theorem 3.8(4), we have

(gi ⇒ gj)(x→ y) = gi(x→ y)→ gj(x→ y)

= (x→ gi(y))→ (x→ gj(y))

= x→ (gi(y)→ gj(y))

= x→ (gi ⇒ gj)(y),

which implies gi ⇒ gj ∈ I(L).
Moreover, we have

(gi ∩ ¬gi)(x) = gi(x) ∧ ¬gi(x)

= gi(x) ∧ (gi(x)→ g1(x))

= gi(x) ∧ g1(x)

= g1(x),

(gi ∪ ¬gi)(x) = gi(x) ∨ (gi(x)→ g1(x))

= gi(x) ∨ ((gi(x))∗ ∨ g1(x))

= (gi(x) ∨ (gi(x))∗) ∨ g1(x)

= 1 ∨ g1(x)

= 1

= 1g(x),
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which implies gi ∩ ¬gi = g1 and gi ∪ ¬gi = 1g.
Thus (I(L),∩,∪,¬, g1, 1g) is a Boolean algebra.

We have seen Theorem 3.29 in [20] that every distributive lattice is iso-
morphic to the algebra of all principal derivations. The corresponding result
for Boolean algebra is as follows.

Theorem 3.11. Let (L,∧,∨, ∗, 0, 1) be a Boolean algebra. Then (L,∧,∨, ∗, 0, 1)
is isomorphic to (I(L),∩,∪,¬, g1, 1g).

Proof. Let φ : L −→ I(L) be defined by φ(a)(x) = a∨x, for all a, x ∈ L. Then
follows from Theorem 3.8(2) that φ is well defined.

(1) If φ(a) = φ(b), then φ(a)(x) = φ(b)(x), and so a ∨ x = b ∨ x for all
x ∈ L. Now, if x = a, then a ∨ a = b ∨ a, so b ∨ a = a, that is, b ≤ a. If x = b,
then a∨ b = b∨ b, and hence a∨ b = b, that is, a ≤ b. So a = b, which implies
that φ is an injective mapping.

(2) For any g ∈ I(L), there exists g(0) ∈ L such that g = φ((g(0))), which
implies that φ is a surjection mapping. Indeed, by Theorem 3.8 (1)⇒ (2), we
have g(x) = g(0)⊕ x = g(0) ∨ x = φ(g(0))(x) for any x ∈ L.

(3) For any a, b, x ∈ L, we have

φ(a ∧ b)(x) = (a ∧ b) ∨ x = (a ∨ x) ∧ (b ∨ x) = (φ(a) ∩ φ(b))(x),

φ(a ∨ b)(x) = (a ∨ b) ∨ x = (a ∨ x) ∨ (b ∨ x) = (φ(a) ∪ φ(b))(x),

φ(a∗) = a∗ ∨ x
= a→ x

= (a→ x) ∧ (x→ x)

= (a ∨ x)→ x

= φ(a)(x)→ g1(x)

= ¬φ(a)(x),

which implies that φ is a homomorphism.
Therefore (L,∧,∨, ∗, 0, 1) and (I(L),∩,∪,¬, g1, 1g) are isomorphic.

In order to obtain a representation of MV-algebras, we introduce the reg-
ular implicative derivation as following.

Definition 3.12. An implicative derivation g is said to be regular if g(0) ∈
B(L).

Remark 3.13. (1) Examples 3.3 and 3.4 show that implicative derivations
are not regular implicative derivations, in general.

(2) The implicative derivation in Example 3.3 is regular if and only if
a ∈ B(L). Indeed, if a ∈ B(L), then ga(0) = a→ 0 = a∗ ∈ B(L). Conversely,
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if ga is regular, then ga(0) = ga(0) ⊕ ga(0), which implies a∗ = a∗ ⊕ a∗, and
so a ∈ B(L).

(3) There is no nontrivial regular implicative derivation on 2-valued Boolean
algebra. Indeed, it is easily verified that B(L) = {0, 1} if and only if either
regular implicative derivation d is an identity derivation or a zero derivation.

Proposition 3.14. Let g be a regular implicative derivation on L. Then the
following hold: for any x, y ∈ L,

(1) g(g(x)) = g(x),
(2) g(x⊕ y) = g(x)⊕ g(y),
(3) g(L) = Fixg(L), where Fixg(L) = {x ∈ L|g(x) = x}.

Proof. (1) For any x ∈ L, by Proposition 3.5(5), we have

g(g(x)) = g(x⊕ g(0))

= x⊕ g(0)⊕ g(0)

= x⊕ g(0)

= g(x).

Thus, g(g(x)) = g(x) for any x ∈ L.
(2) For any x, y ∈ L, by Proposition 3.5(5), we have

g(x⊕ y) = g(0)⊕ (x⊕ y)

= g(0)⊕ g(0)⊕ x⊕ y
= (g(0)⊕ x)⊕ (g(0)⊕ y)

= g(x)⊕ g(y).

Thus, g(x⊕ y) = g(x)⊕ g(y) for any x, y ∈ L.
(3) It follows from (1).

Proposition 3.15. Let g be a regular implicative derivation on L. Then
(g(L),⊕, ?, g(0)) is also an MV-algebra, where x? = g(x∗) for any x ∈ g(L).

Proof. It follows from Propositions 3.5 and 3.14.

The following theorem gives a representation of MV-algebras in terms of
regular implicative derivations.

Theorem 3.16. Every MV-algebra L is isomorphic to the direct product
(g(L),⊕, ?1, g(0)) and (g∗(L),⊕, ?2, (g(0))∗), where g∗(L) = {x ∈ L|g∗(x) =
x}, g∗(x) = g(0)→ x and g(0) ∈ B(L).



Study of MV-algebras via derivations 270

Proof. Let ϕ : L → g(L) × g∗(L) be defined by ϕ(x) = (g(x), g∗(x)) for all
x ∈ L. Then follows from Propositions 3.14 and 3.15 that ϕ is well defined
and a surjection homomorphism from L to g(L)× g∗(L).

Also, if x1 ∈ g(L) and x2 ∈ g∗(L), for x = x1 ∧ x2, then ϕ(x) = (x1, x2).
Since (L,∧,∨, 0, 1) is a distributive lattice, we have

x = (g(0) ∨ x) ∧ ((g(0))∗ ∨ x) = (g(0)⊕ x) ∧ (g(0)→ x) = g(x) ∧ g∗(x)

for all x ∈ L, which implies that ϕ is a injective mapping.
It is easy to verify that ϕ is bijection and that ϕ−1(x, y) = x ∧ y, for all

(x, y) ∈ g(L) × g∗(L), is also a surjection homomorphism from g(L) × g∗(L)
to L.

4 Difference derivations on MV-algebras

In this section, we give some characterizations of difference derivations and
discuss the relationship between the regular derivation pair and the Galois
connection on MV-algebras. Also, we prove that regular difference derivations
coincide with direct product decompositions of MV-algebras.

Definition 4.1. Let L be an MV-algebra. A mapping d : L −→ L is called
a difference derivation on L if it satisfies the following condition: for any
x, y ∈ L,

d(x	 y) = (d(x)	 y) ∧ (x	 d(y)).

We will denote the set of all difference derivations of an MV-algebra by
D(L).

Example 4.2. Let L be an MV-algebra. Define a mapping d0 : L −→ L by
d0(x) = 0 for all x ∈ L, then d0 is a difference derivation on L, which is called
a zero difference derivation. Moreover, we define a mapping d1 : L −→ L by
d1(x) = x for all x ∈ L. Then d is a difference derivation on L, which is called
an identity difference derivation.

Example 4.3. Let L be an MV-algebra and a ∈ L. Define a mapping da :
L −→ L by da(x) = x � a for all x ∈ L, then da is a difference derivation on
L, which is called a simple difference derivation.

Example 4.4. Considering MV-algebra Sn in Example 3.4. Now, we define
a mapping d : Sn → Sn as follows: for all x ∈ Sn,

d(x) =

{
1

n−1 , x = 1
1

n−1 � x, x 6= 1
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It is easily verified that d is a difference derivation on Sn.

Proposition 4.5. Let d be a difference derivation on L. Then the following
hold: for any x, y ∈ L,

(1) d(0) = 0,
(2) d(x) ≤ x,
(3) if x ≤ y, then d(x) ≤ d(y),
(4) d(x)	 y ≤ x	 d(y),
(5) d(x) = d(1)� x,
(6) d(x)� y = x� d(y),
(7) d(x ∧ y) = d(x) ∧ d(y),
(8) d(x ∨ y) = d(x) ∨ d(y).

Proof. The proofs of (4),(6)-(8) are easy, we only to prove (1)-(3),(5).
(1) From Proposition 2.1(2), we have

d(0) = d(0	 0) = (d(0)	 0) ∧ (0	 d(0)) = 0.

(2) For any x ∈ L, by Proposition 2.1(2), we have

d(x) = d(x	 0) = (d(x)	 0) ∧ (x	 d(0)) = d(x) ∧ x.

Thus, d(x) ≤ x for any x ∈ L.
(3) If x ≤ y, then x = x ∧ y = y 	 (y 	 x), and hence

d(x) = d(y 	 (y 	 x))

= (d(y)	 (y 	 x)) ∧ (y 	 d(y 	 x))

≤ d(y)	 (y 	 x)

≤ d(y),

and so d(x) ≤ d(y).
(5) For any x ∈ L, by Proposition 2.1(2), we have

d(x) = d(1	 x∗) = (d(1)	 x∗) ∧ (1	 d(x∗)) = (d(1)� x) ∧ (d(x∗))∗.

Also, from (2), we have x = x∗∗ ≤ (d(x∗))∗. Thus, d(x) = d(1) � x for any
x ∈ L.

Remark 4.6. Proposition 4.5(4) gives us an ideal of introducing a difference
derivation on an MV-algebra in a different way. Namely, we can consider a
mapping d : L→ L satisfying

d(x	 y) = d(x)	 y
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for any x, y ∈ L. As an application of the above statement, we have that da
in Example 4.3 is a difference derivation, since

da(x	 y) = a� (x	 y) = a� (x� y∗) = (a� x)� y∗ = da(x)	 y

for any x, y ∈ L.

Next, we give some characterizations of difference derivations on MV-
algebras.

Theorem 4.7. Let d be a self mapping on L. Then the following statements
are equivalent: for any x, y ∈ L,

(1) d is a difference derivation on L,
(2) d(x) = d(1)� x,
(3) d(x� y) = d(x)� y,
(4) d(x	 y) = d(x)	 y.

Proof. (1)⇒ (2) It follows from Proposition 4.5(5).
(2)⇒ (3) For any x, y ∈ L, by Proposition 4.5(5), we have

d(x� y) = d(1)� (x� y) = x� (d(1)� y) = x� d(y).

(3)⇒ (4) For any x, y ∈ L, by (3), we have

d(x	 y) = d(x� y∗) = d(x)� y∗ = d(x)	 y.

(4)⇒ (1) It follows from Remark 4.6.

Let α : D(L) −→ I(L) be the mapping such that α(d)(x) = (d(x∗))∗ for
any d ∈ D(L), x ∈ L, and β : I(L) −→ D(L) be the mapping such that
β(g)(x) = (g(x∗))∗ for any g ∈ I(L), x ∈ L.

Theorem 4.8. The α and β form an antitone Galois connection between
D(L) and I(L). Namely, d ≤ β(g) if and only if g ≤ α(d) for any d ∈ D(L)
and g ∈ I(L).

Proof. It follows from Propositions 4.5(3) and 3.5(4) that α and β are antitone.
If d ≤ β(g), then d(x) ≤ β(g)(x) = (g(x∗))∗, and hence (d(x))∗ ≥ g(x∗) for

any x ∈ L. So (d(x∗))∗ ≥ g(x), which implies α(d)(x) ≥ g(x) for any x ∈ L.
Thus g ≤ α(d).

Conversely, if g ≤ α(d), then g(x) ≤ α(d)(x) = (d(x∗))∗, and hence d(x∗) ≤
(g(x))∗, which implies d(x) ≤ (g(x∗))∗ = β(g)(x) for any x ∈ L. Thus d ≤
β(g).

Definition 4.9. A difference derivation d is said to be regular if d(1) ∈ B(L).
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Remark 4.10. (1) Examples 4.3 and 4.4 show that difference derivations are
not regular, in general.

(2) The difference derivation da in Example 4.4 is regular if and only if
a ∈ B(L). The proof is similar to that of Remark 3.13(2).

Proposition 4.11. Let d be a regular difference derivation on L. Then the
following hold: for any x, y ∈ L,

(1) d(d(x)) = d(x),
(2) d(x� y) = d(x)� d(y),
(3) d(x⊕ y) = d(x)⊕ d(y),
(4) d(L) = Fixd(L), where Fixd(L) = {x ∈ L|d(x) = x}.

Proof. The proof is similar to that of Proposition 3.14.

Let L be an MV-algebra and gd, dg : L → L be the mappings such that
gd(x) = (d(x∗))∗, and dg(x) = (g(x∗))∗ for any x ∈ L, d ∈ D(L), g ∈ I(L).

Theorem 4.12. There exists a one to one correspondence between I(L) and
D(L). Namely,

(1) gd is a regular implicative derivation on L,
(2) dg is a regular difference derivation on L,
(3) d(gd) = d and g(dg) = g.

Proof. If d is a regular difference derivation on L, then

gd(x→ y) = (d(x→ y)∗)∗ = (d(x∗ ⊕ y)∗)∗

= (d(x� y∗))∗ = (x� d(y∗))∗

= x∗ ⊕ (d(y∗))∗

= x→ gd(y),

for any x, y ∈ L, which implies that gd is an implicative derivation on L. Also,
since d(1) ∈ B(L), we have gd(0) = (d(0∗))∗ = (d(1))∗ ∈ B(L). Thus gd is
regular.

Conversely, if g is a regular implicative derivation on L, then

dg(x� y) = (g((x� y)∗))∗ = (g(x∗ ⊕ y∗))∗

= (g(x→ y∗))∗ = (x→ g(y∗))∗

= x� (g(y∗))∗

= x� dg(y),

for any x, y ∈ L, which implies that dg is a difference derivation on L. Also,
since g(0) ∈ B(L), we have dg(1) = (g(1∗))∗ = (g(0))∗ ∈ B(L). Thus dg is
regular.
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Moreover, we have

d(gd)(x) = d((d(x∗))∗) = d(1)� ((d(1))∗ ⊕ x)

= (d(1)� (d(1))∗)⊕ (d(1)� x)

= d(1)� x
= d(x)

for any x ∈ L, and so d(gd) = d. Similarity, g(dg) = g.

We denote the pair of regular difference and implicative derivations of an
MV-algebra L by (d, g), which is called the regular derivation pair on L.

In what follows, we discuss the relationship between the regular derivation
pair and the Galois connection on MV-algebra L.

Proposition 4.13. Let (d, g) be a regular derivation pair on L. Then (d, g)
establishes a Galois connection between d(L) and g(L).

Proof. (1) For all x ∈ g(L) ⊆ L, by Proposition 4.11(1), we have d(x) ∈ d(L),
and hence d is a well defined mapping from g(L) to d(L). Similarity, g is a
well defined mapping from d(L) to g(L).

(2) Applying Propositions 3.5(4) and 4.5(3), we obtain that g and d are all
isotone mappings between d(L) and g(L).

(3) If y ≤ d(x) (g(y) ≤ x), then follows from Propositions 4.5(2)(3.5(2))
that d(y) ≤ d(x) (g(y) ≤ g(x)), and hence g(y) ≤ x (y ≤ d(x)) for any
x, y ∈ L.

Thus (d, g) establishes a Galois connection between d(L) and g(L).

The following example shows that the regular derivation pair does not
forms a Galois connection on L, in general.

Example 4.14. Considering MV-algebra S3 in Example 3.4. From Examples
3.2 and 4.1, we know that 1g and d0 are regular implicative and difference
derivation on L, respectively. However, (1g, d0) does not forms a Galois con-
nection on S3, since d0( 1

2 ) = 0 ≥ 0, g1(0) = 1 
 1
2 .

In what follows, we prove that every regular derivation pair is a Galois
connection on L if and only if d(L)=g(L).

Theorem 4.15. Let (d, g) be a regular derivation pair on L. Then the fol-
lowing statements are equivalent:

(1) (d, g) forms a Galois connection on L,
(2) d(L)=g(L).
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Proof. (1) ⇒ (2) If (d, g) establishes a Galois connection on L, then g(x) =
gd(x) ≤ x, further by Proposition 3.5(2), we have g(x) = x for any x ∈ d(L).
Thus d(L) ⊆ g(L). Similarity, g(L) ⊆ d(L). So d(L) = g(L).

(2) ⇒ (1) If y ≤ d(x), then gd(x) = g(d(x)) ≥ g(y) further by d(x) ∈
d(L) = g(L), we have gd(x) = g(d(x)) = d(x), and hence g(y) ≤ d(x) ≤ x for
any x, y ∈ L. Thus g(y) ≤ x. Similarity, g(y) ≤ x implies y ≤ d(x). Then
follows from Propositions 3.5(4) and 4.5(3) that d and g are isotone. Thus
(d, g) establishes a Galois connection on L.

Example 4.16. Considering two mappings da(x) = a� x, ga(x) = a→ x for
any a ∈ L/B(L), x ∈ L, on MV-algebra L. It is easy to check that (da, ga)
forms a Galois connection on L, but it does not form a regular derivation pair
on L.

Inspired by Theorem 4.15 and Example 4.16, we have the following prob-
lem.

Open problem. Under which suitable conditions, every Galois connection is
a regular derivation pair on MV-algebra L?

Our objective now is to obtain the relationship between regular difference
derivations and the direct product decompositions of MV-algebras. For this
purpose, we require the following facts.

Proposition 4.17. Let d be a regular implicative derivation on L. Then
(1) (d(L),⊕, ?3, d(0)) is an MV-algebra, where x? = d(x∗) for any x ∈

d(L),
(2) d : L −→ d(L) is a surjective homomorphism,
(3) d̄: L/Ker(d) −→ d(L) is an isomorphism.

Proof. It follows from Proposition 4.11.

Theorem 4.18. Every MV-algebra L is isomorphic to the direct product
(d(L),⊕, ?3, d(0)) and (d∗(L),⊕, ?4, (d(0))∗), where d∗(L) = {x ∈ L|d∗(x) =
x}, d∗(x) = (d(1))∗ � x and d(1) ∈ B(L).

Proof. The proof is similar to that of Theorem 3.16.

Corollary 4.19. Every MV-algebra L is isomorphic to the direct product
([d(0), 1],⊕, ?3′ , d(0)) and ([(d(0))∗, 1],⊕, ?4′ , (d(0))∗).

Proof. It follows from Theorems 2.4 and 4.18.

The following theorem shows that there exists a one to one correspondence
between regular implicative derivations and direct product decompositions on
MV-algebras.
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Theorem 4.20. Let L be an MV-algebra. Then there exists a one to one
correspondence between the regular difference derivations on L and the direct
product decompositions L ∼= L1 × L2, where L1 = ([e, 1],⊕, ?3′ , e), L2 =
([e∗, 1],⊕, ?4′ , e∗).

Proof. Now, let d be a regular difference derivation on MV-algebra such that
e = d(1). Further, let L1 = [0, e], L2 = [0, e∗]. Since L ∼= L1 × L2, it
follows that G ∼= Ge × Ge∗ , where Ge and Ge∗ are the convex `-subgroup of
G generated by e and e∗, respectively. In fact, G is the direct sum of Ge and
Ge∗ , because Ge ∩ Ge∗ = {0} and Ge + Ge∗ = G. The MV-algebra Γ(Ge, e)
is just the interval algebra Le = [0, e]. Also, from Proposition 4.17, d can be
extended to a morphism, denote d̄, from (G, u) onto (Ge, e). It is not hard to
show that d̄ agrees with the projection of G as Ge as a direct summand.

Conversely, if d is a regular difference derivation on MV-algebra L such
that e = d(1) ∈ B(L), then follows from Corollary 4.19 that L ∼= L1 × L2,
where L1 = ([e, 1],⊕, ?3′ , e), L2 = ([e∗, 1],⊕, ?4′ , e∗).

5 Conclusions

The notion of derivations is helpful for studying structures in algebraic
systems. In this paper, we give some representations of MV-algebra in terms
of derivations. In particular, we obtain that every Boolean algebra is isomor-
phic to the algebra of all implicative derivations and prove that regular differ-
ence derivations coincide with direct product decompositions of MV-algebras.
Then, we obtain that a regular derivation pair (d, g) forms a Galois connection
on L if and only if g(L) = d(L). Since the above topics are of current interest
we suggest further directions of research:

(1) we will further discuss the relationship between Galois connections and
regular derivation pairs on MV-algebras and solve the open problem as we
mentioned in the Section 4.

(2) since regular derivation pairs and Galois connections are closely related,
the latter plays an important role in studying Formal Concept Analysis [8]. In
the future, we will find the application of regular derivation pairs in Formal
Concept Analysis .
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